41 research outputs found

    Processed vs. non-processed biowastes for agriculture: effects of post-harvest tomato plants and biochar on radish growth, chlorophyll content and protein production

    Get PDF
    peer-reviewedThe aim of this work was to address the issue of processed vs. non-processed biowastes for agriculture, by comparing materials widely differing for the amount of process energy consumption. Thus, residual post harvest tomato plants (TP), the TP hydrolysates obtained at pH 13 and 60 degrees C, and two known biochar products obtained by 650 degrees C pyrolysis were prepared. All products were characterized and used in a cultivation of radish plants. The chemical composition and molecular nature of the materials was investigated by solid state C-13 NMR spectrometry, elemental analysis and potentiometric titration. The plants were analysed for growth and content of chlorophyll, carotenoids and soluble proteins. The results show that the TP and the alkaline hydrolysates contain lignin, hemicellulose, protein, peptide and/or amino acids moieties, and several mineral elements. The biochar samples contain also similar mineral elements, but the organic fraction is characterized mainly by fused aromatic rings. All materials had a positive effect on radish growth, mainly on the diameter of roots. The best performances in terms of plant growth were given by miscanthus originated biochar and TP. The most significant effect was the enhancement of soluble protein content in the plants treated with the lowest energy consumption non processed TP. The significance of these findings for agriculture and the environment is discussed.PUBLISHEDpeer-reviewe

    Nuclear magnetic resonance (1.40 T) and mid infrared (FTIR-ATR) associated with chemometrics as analytical methods for the analysis of methyl ester yield obtained by esterification reaction

    Get PDF
    In this work, we compared 1.40 T nuclear magnetic resonance (NMR) to 7.05 T (60 and 300 MHz for proton, respectively), and mid-infrared with attenuated total reflectance (FTIR-ATR), associated with chemometrics methods, for the quantification of the reaction yield during esterification of fatty acids with methanol. The results showed that the integrated intensities of the ester C=O stretching region, relative to the total C=O stretching region, is useful to quantify the fatty acid methyl ester (FAME) concentration. Comparing the results obtained by the different final models: NMR (1.40 T and 7.05 T), FTIR-ATR using multivariate partial last squares regression (PLS) with orthogonal signal correction (OSC), and univariate ordinary least squares (OLS), the NMR of 1.40 T (60 MHz for proton) showed more advantages when compared to a high field spectrometer, due to the non-use of cryogenic and solvents and less laborious work for obtaining results

    Biochar and soil nitrous oxide emissions

    Get PDF
    The objective of this work was to evaluate the effect of biochar application on soil nitrous oxide emissions. The experiment was carried out in pots under greenhouse conditions. Four levels of ground commercial charcoal of 2 mm (biochar) were evaluated in a sandy Albaqualf (90% of sand): 0, 3, 6, and Mg ha-1. All treatments received 100 kg ha-1 of N as urea. A cubic effect of biochar levels was observed on the N 2O. Biochar doses above 5 Mg ha-1 started to mitigate the emissions in the evaluated soil. However, lower doses promote the emissions.The objective of this work was to evaluate the effect of biochar application on soil nitrous oxide emissions. The experiment was carried out in pots under greenhouse conditions. Four levels of ground commercial charcoal of 2 mm (biochar) were evaluated in a sandy Albaqualf (90% of sand): 0, 3, 6, and 9 Mg ha-1. All treatments received 100 kg ha-1 of N as urea. A cubic effect of biochar levels was observed on the N2O emissions. Biochar doses above 5 Mg ha-1 started to mitigate the emissions in the evaluated soil. However, lower doses promote the emissions

    Reproducing the organic matter model of anthropogenic dark earth of Amazonia and testing the ecotoxicity of functionalized charcoal compounds

    Get PDF
    The objective of this work was to obtain organic compounds similar to the ones found in the organic matter of anthropogenic dark earth of Amazonia (ADE) using a chemical functionalization procedure on activated charcoal, as well as to determine their ecotoxicity. Based on the study of the organic matter from ADE, an organic model was proposed and an attempt to reproduce it was described. Activated charcoal was oxidized with the use of sodium hypochlorite at different concentrations. Nuclear magnetic resonance was performed to verify if the spectra of the obtained products were similar to the ones of humic acids from ADE. The similarity between spectra indicated that the obtained products were polycondensed aromatic structures with carboxyl groups: a soil amendment that can contribute to soil fertility and to its sustainable use. An ecotoxicological test with Daphnia similis was performed on the more soluble fraction (fulvic acids) of the produced soil amendment. Aryl chloride was formed during the synthesis of the organic compounds from activated charcoal functionalization and partially removed through a purification process. However, it is probable that some aryl chloride remained in the final product, since the ecotoxicological test indicated that the chemical functionalized soil amendment is moderately toxic.The objective of this work was to obtain organic compounds similar to the ones found in the organic matter of anthropogenic dark earth of Amazonia (ADE) using a chemical functionalization procedure on activated charcoal, as well as to determine their ecotoxicity. Based on the study of the organic matter from ADE, an organic model was proposed and an attempt to reproduce it was described. Activated charcoal was oxidized with the use of sodium hypochlorite at different concentrations. Nuclear magnetic resonance was performed to verify if the spectra of the obtained products were similar to the ones of humic acids from ADE. The similarity between spectra indicated that the obtained products were polycondensed aromatic structures with carboxyl groups: a soil amendment that can contribute to soil fertility and to its sustainable use. An ecotoxicological test with Daphnia similis was performed on the more soluble fraction (fulvic acids) of the produced soil amendment. Aryl chloride was formed during the synthesis of the organic compounds from activated charcoal functionalization and partially removed through a purification process. However, it is probable that some aryl chloride remained in the final product, since the ecotoxicological test indicated that the chemical functionalized soil amendment is moderately toxic

    Lessons from the terra preta de índios of the amazon region for the utilisation of charcoal for soil amendment

    Get PDF
    peer-reviewedThe potential of charcoal and of partially combusted organic waste to mimic the soil organic matter of the Terras Pretas de Índios (Amazonian Dark Earths) from the Amazon Region is discussed. These materials serve as soil conditioners and as sequesterers of carbon in recalcitrant and in reactive forms. Studies carried out by Brazilian and by international groups have contributed to the emergence of an awareness of the compositions and of the uses of these materials. In this contribution we report on chemical studies that are leading to the development of a scientific and technological awareness, and of innovations that will have value in finding novel uses in applications to soil of chars from organic wastes such as those from the biofuel industry, and from metallurgical and various coal plant residues

    Carbon and nitrogen stable isotope compositions of organic matter in marine sediment cores from the Abrolhos region: indicators of sources and preservation

    Get PDF
    Organic matter is an important source of information on the transport and consolidation processes of sediments. In this study, the isotopes of carbon and nitrogen (δ13C and δ15N), total organic carbon (TOC), total nitrogen, carbon/nitrogen (C/N) ratio, and 13C-NMR were utilized to understand the origin and behavior of organic material in the Abrolhos region. It were analyzed nine sediment cores taken from a mangrove, a channel between the mainland and the coral reefs. The average value of the C/N ratio in the mangrove was 18, which characterizes purely terrigenous areas. For the reefs, the average value of the C/N ratio was 8,which is characteristic of marine and coastal regions. For the sediment cores taken from the channel, the average value of the C/N ratio was 10, a typical value of areas under the influence of mangroves. The mean values of δ13C were -26.9‰ for the mangrove, -20.7‰ for the channel region, and -18.2‰ for the reefs. This variation is associated with the main source of organic matter, which in the mangrove is derived from vascular plants (mainly C3 metabolism) and for the reefs is derived from phytoplankton. The 13C-NMR results corroborate the isotopic and elemental analyses. The analyses of these cores indicate that the anthropogenic influence on the coast did not significantly alter the composition of the material that has been deposited in about the last 80 years in the region of study.A matéria orgânica é uma fonte de informação importante nos processos\ud de transporte e consolidação de sedimentos. Neste estudo, foram utilizados\ud isótopos de carbono e de nitrogênio (δ13C e δ15N), carbono orgânico total\ud (TOC), nitrogênio total, razão carbono/nitrogênio (C/N) e 13C-NMR para\ud entender a origem e o comportamento do material orgânico na região de\ud Abrolhos. Foram analisados nove testemunhos de sedimentos coletados em\ud um manguezal, em um canal e em recifes de corais. O valor médio da razão\ud C/N no manguezal foi de 18, o que caracteriza áreas puramente terrígenas.\ud Nos recifes, esse valor foi de 8, característico de regiões marinhas e costeiras,\ud e, nos testemunhos de sedimentos coletados no canal, foi de 10, um valor\ud típico de áreas sob a influência de manguezais. O valor médio de δ13C foi de\ud -26,9‰ para o manguezal, -20,7‰ para a região do canal e -18,2‰ para os\ud recifes. Essa variação é associada com a principal fonte de matéria orgânicaa qual, no manguezal, é derivada de plantas vasculares (principalmente de\ud metabolismo C3) e, nos recifes, é derivada de fitoplâncton. Os resultados de\ud 13C-NMR corroboram as análises isotópicas e elementais. As análises dos\ud testemunhos indicam que a influência antropogênica da região costeira não\ud altera significantemente a composição do material que tem sido depositado\ud nos últimos 80 anos na região estudad

    Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies

    Get PDF
    Abstract\ud \ud Background\ud Lignocellulose is one of the most abundant forms of fixed carbon in the biosphere. Current industrial approaches to the degradation of lignocellulose employ enzyme mixtures, usually from a single fungal species, which are only effective in hydrolyzing polysaccharides following biomass pre-treatments. While the enzymatic mechanisms of lignocellulose degradation have been characterized in detail in individual microbial species, the microbial communities that efficiently breakdown plant materials in nature are species rich and secrete a myriad of enzymes to perform “community-level” metabolism of lignocellulose. Single-species approaches are, therefore, likely to miss important aspects of lignocellulose degradation that will be central to optimizing commercial processes.\ud \ud \ud Results\ud Here, we investigated the microbial degradation of wheat straw in liquid cultures that had been inoculated with wheat straw compost. Samples taken at selected time points were subjected to multi-omics analysis with the aim of identifying new microbial mechanisms for lignocellulose degradation that could be applied in industrial pre-treatment of feedstocks. Phylogenetic composition of the community, based on sequenced bacterial and eukaryotic ribosomal genes, showed a gradual decrease in complexity and diversity over time due to microbial enrichment. Taxonomic affiliation of bacterial species showed dominance of Bacteroidetes and Proteobacteria and high relative abundance of genera Asticcacaulis, Leadbetterella and Truepera. The eukaryotic members of the community were enriched in peritrich ciliates from genus Telotrochidium that thrived in the liquid cultures compared to fungal species that were present in low abundance. A targeted metasecretome approach combined with metatranscriptomics analysis, identified 1127 proteins and showed the presence of numerous carbohydrate-active enzymes extracted from the biomass-bound fractions and from the culture supernatant. This revealed a wide array of hydrolytic cellulases, hemicellulases and carbohydrate-binding modules involved in lignocellulose degradation. The expression of these activities correlated to the changes in the biomass composition observed by FTIR and ssNMR measurements.\ud \ud \ud Conclusions\ud A combination of mass spectrometry-based proteomics coupled with metatranscriptomics has enabled the identification of a large number of lignocellulose degrading enzymes that can now be further explored for the development of improved enzyme cocktails for the treatment of plant-based feedstocks. In addition to the expected carbohydrate-active enzymes, our studies reveal a large number of unknown proteins, some of which may play a crucial role in community-based lignocellulose degradation.This work was funded by Biotechnology and Biological Sciences Research\ud Council (BBSRC) Grants BB/1018492/1, BB/K020358/1 and BB/P027717/1, the\ud BBSRC Network in Biotechnology and Bioenergy BIOCATNET and São Paulo\ud Research Foundation (FAPESP) Grant 10/52362-5. ERdA thanks EMBRAPA\ud Instrumentation São Carlos and Dr. Luiz Alberto Colnago for providing the\ud NMR facility and CNPq Grant 312852/2014-2. The authors would like to thank\ud Deborah Rathbone and Susan Heywood from the Biorenewables Develop‑\ud ment Centre for technical assistance in rRNA amplicon sequencing
    corecore